PRACTICAL COMPUTING
USING MATLAB

The Basics

Title: PRACTICAL COMPUTING USING MATLAB: The Basics
Copyright (©) 2024 Jesse Gabriel

All rights reserved. No part of this book may be reproduced or transmitted in any form
or by any means, electronic or mechanical, including photocopying, recording, or by
any information storage and retrieval system, without permission in writing from the
publisher.

Trademark notice: MATLAB is a registered trademark of MathWorks, Inc. The use of
MATLAB in this book is for illustrative and educational purposes only, and MathWorks
is not affiliated with or endorsing the content of this publication. Remember to check
the specific requirements or guidelines provided by MathWorks regarding the use of their
trademark, as they may have certain stipulations for how it should be presented.

Other products or corporate names may be trademarks or registered trademarks and
are used only for identification and explanation without intent to infringe.

Contents

Preface iv
Acknowledgements v
Author vi
1 Introduction 1
2 MATLAB Basics 15
3 Introduction to MATLAB Programming 62
4 Practice Mini-Projects 83
Appendix A: Answers to Selected Review Questions 93
Appendix B: Glossary of MATLAB Commands 95
References 98

Index of Examples 100

vii

Chapter 1

Introduction

1.1 Overview

Computing is such an interesting field that many of us are undeniably curious
and interested in. Computing comes in many forms, types, systems, tools and
platforms, but often, we generally describe it as digital technologies. The ones
that we are most familiar with and use almost daily include the internet, the
apps or applications and software in our phones and computers, the social media
applications including Facebook and WhatsApp, even our mobile phones, our
desktop or laptop computers and many others. These are all computing devices
that are generally grouped as software applications and hardware devices. A
computer hardware is any element of a computer that is physical. This includes
things like monitors, keyboards, and also the insides of devices, like microchips
and hard drives, as well as our phones and physical calculators. A software is
anything that tells the hardware what to do and how to do it, including computer
programs and apps on our phones including Facebook and WhatsApp.

In the context of this book, we are interested in the computer software. Think
of computers as a human body. In the context of this book, we are simply
interested in the computer’s brain and nervious system, where the brain is like the
central processing unit (CPU) and the software applications are like the nervious
system and together they instruct the different parts of the body (hardware) what
to do and how to do things. This brings us to the big question: how do you write
such a computer software? The purpose of this book is simply to answer that
question: not in words, but in practical software writing. As all things start small,
this book provides basic software writing techniques, methods and terminologies
especially through solved practice exercises. The MATLAB software is used for
the purpose of this.

MATLAB is one of the powerful tools out there to write or create computer
software or program, or simply computer code. You can use MATLAB to write
different types of code, but it specializes in numerical (numbers) computations
mainly applied in engineering, science and economics. We won’t go into those big
calculations, but start with the basics.

52 CHAPTER 2. MATLAB BASICS

You can also use the hold on function in MATLAB to create many plots on
the same figure. Try the following code in the editor.

x = linspace(0, 2*pi, 100);

y_sin = sin(x); y_cos = cos(x); y_2sin = 0.5*xsin(2%*x);
plot(x, y_sin, 'b', 'LineWidth', 1.2); hold on;
plot(x, y_cos, 'r', 'LineWidth', 1.2);

plot(x, y_2sin, 'g', 'LineWidth', 1.2); hold off;

xlabel('x'); ylabel('f(x)'); title('Trigonometric Functions');

xticks ([0,pi/2,pi,3*pi/2,2*pil);

xticklabels ({'0','\pi/2','\pi','3\pi/2','2\pi'}); yticks
([-1,-0.5,0,0.5,11);

legend ('\sin(x)', '\cos(x)', '\frac{1}{2}\sin(2x)');
1 4
0.5
01
—0.5
_1 i i i i
0 g ™ %; 2

Figure 2.9: Trigonometric functions.

Scatter Plots

Scatter plots are used to visualize the relationship between variables by plotting
individual data points on a plane. Each data point is represented by a marker
at its corresponding z — y coordinates. To create a 2D scatter plot, you need
two vectors of equal length: one for the z-values and one for the corresponding
y-values. Here’s an example:

>> x = [1 2 3 4 5];
>y = [6 27 4 8];

>> scatter(x, y);

>> xlabel('x'); ylabel('y');
>> title('Scatter Plot');

In this example, we have two vectors & and y representing the z and y coor-
dinates of the data points. The scatter function is used to generate the scatter
plot by plotting the data points on the graph. This generates a plot similar to
Figure 2.10: Scatter plots are particularly useful for visualizing patterns, trends,
or relationships between variables. They can also be customized by changing the
marker shape, size, color, and adding legends to distinguish different groups of
data points.

Bar Plots

Bar plots are commonly used to represent categorical data or to compare different
quantities across categories. Each category is represented by a bar whose height

2.8. FURTHER READING o7

204
£
j*)
203
202
=
So0.1
o
f]
~ 0
-4 2 0 2 4
Value

Figure 2.16: Histogram plot of Gaussian (normal) data distribution.

2.8 Further Reading

There are many books and online resources which aim at teaching MATLAB,
including the official documentation of MATLAB from MathWorks. The topics
covered here are basics and the keen reader is encouraged use these as pointers to
explore more detailed online resources. References [20, 21] consist of a complete
introduction to programming in MATLAB. This list is not restricted to those
references though and among the online books there is a huge variety of books
written for teaching MATLAB. Books [22, 24] also provide concrete introduction
to MATLAB with specialization in numerical computing in science and engineer-
ing. The book [23] teaches data science in MATLAB. In terms of arrays including
matrices that we briefly covered, a complete reference on matrices and linear al-
gebra can be found from introductory books to linear algebra written by Gilbert
Strang [27, 28].

The MATLAB software package also offers comprehensive help and documen-
tation resources to assist you in learning and using the software effectively. The
Help Browser provides access to the MATLAB documentation, which includes
detailed explanations, examples, and references for each function and toolbox.
You can search for specific topics or browse through the available documentation
that can be accessed as shown in Figure 2.17.

. SEEEIoN) EREEmE ¢ oo

> | Analyze Code - (©} Preferences () (% Community
Lk Cu (D 8 & @
(i Run and Time [Set Path = Request Support
Favorites Simulink Layout Add-Ons Help 5
- T) clear Gommands ~ v [liPae v T YT] LeanmaLB Help and Documentation
coDE SHULNK ENVRONMENT RESOURCES A
peral =
1> 4
bration ("add", "subtract", "multiply" oz "divide"): add e Value
[loex : _220 8 num? 20
[FH num2 20
K operation add’
result 40

Figure 2.17: Help can be searched in the indicated space. This brings out com-
prehensive documentation of the search results.

3.6. MATLAB CODE ORGANISATION TIPS 79

Comment Your Code

Comments are crucial for explaining complex logic, documenting your code’s pur-
pose, and providing usage instructions for functions. Use comments to describe
the purpose of variables, functions, and major code sections.

% Calculate the average temperature
average_temp = mean(temperature_data);
% Define a function to calculate the square of a number
function result = square_number (x)
% Square the input
6 result = x72;
end

L N

~

Organize Code into Functions

Breaking your code into functions enhances modularity and reusability. Each
function should have a single, well-defined purpose. Aim for functions that are
relatively short and focus on one task.

% Function to load and preprocess temperature data

function temperature_data = load_and_preprocess_data(filename)
temperature_data = load(filename) ;
% Additional preprocessing steps can go here

oR W N e

end

1| % Main script
2| data = load_and_preprocess_data('temperature_data.txt');
s| plot_data(data) ;

Use Script Files for Sequential Code

Scripts are useful for organizing sequential code that runs from top to bottom.
However, avoid placing complex logic directly in script files. Instead, call functions
defined in separate function files.

Create Meaningful Subdirectories

Finally, as your MATLAB project grows, organizing your files into meaningful
subdirectories becomes essential. This practice helps maintain a clear project
structure and makes it easier to locate specific files. Consider the following sub-
directory organization:
i) Data: Store raw data files or datasets in this directory.
ii) Functions: Place custom functions you’ve written in this directory. Orga-
nize them based on functionality or purpose.
iii) Scripts: Keep your main scripts or entry point scripts in this directory.
These scripts usually call functions defined in the ”Functions” directory.
iv) Tests: If you're following best practices and writing unit tests for your
functions, keep your test scripts and data in this directory.

v) Documentation: Store any project-related documentation, such as README

files or notes, here.

86 CHAPTER 4. PRACTICE MINI-PROJECTS

Note that in the above code, we have used the structure data type that we
briefly described in Table 2.3, to store the details of the excnange rates. The
structure data type in MATLAB allows grouping different data elements together
under a single variable. In the above code, the structure named exchangeRates
is created to store the exchange rates for various currencies. Each currency is
associated with a specific exchange rate.

Structure data type

A structure data type in MATLAB is a like a flexible container that allows the
grouping of related data using named fields, providing a way to organize and
access different types of information within a single variable.

Let’s use the Currency Converter with some examples, then see how data
is stored in the structure data type. Run the script and provide inputs in the
command window as follows.

Enter the amount: 100

Enter source currency code (e.g., USD): USD
Enter target currency code (e.g., AUD): AUD
Converted Amount: 136 AUD

Enter the amount: 1000

Enter source currency code (e.g., USD): PGK
Enter target currency code (e.g., AUD): USD
Converted Amount: 281.6901 USD

Our currency converter is working perfectly! Now let’s see how the data ele-
ments are stored in the structure data typeexchangeRates. Type exchangeRates
in the command window and press “ENTER”.

>> exchangeRates
exchangeRates =
struct with fields:
PGK: 3.5500

AUD: 1.3600
UsSD: 1

NzD: 1.4800
CNY: 6.4400

exchangeRates has five fields with data corresponding to the currency cun-
version factors. We can access each conversion factor as follows:

>> exchangeRates.PGK

ans =
3.5500
>> exchangeRates.CNY
ans =
6.4400

You can also create structure data type in exchangeRates is as follows:

	d8d0faa43ec9437eaa799867e06b06f2c73f57fcc1e425817d91cb3de83af1b1.pdf
	35febe8ad62f53febe5044a11014e6170e36397514c2e3857a8c605f3f2a3430.pdf
	4e3d67f3119cb1411f788fb8f27258a79f79d2780fcc46cc98bbb882258385d0.pdf
	f5c6e7f3a8bdde1d91702c9b3342f3765a07a5b1b3fd0dadfaac7bb310b22e76.pdf

	4e3d67f3119cb1411f788fb8f27258a79f79d2780fcc46cc98bbb882258385d0.pdf
	f5c6e7f3a8bdde1d91702c9b3342f3765a07a5b1b3fd0dadfaac7bb310b22e76.pdf

	4e3d67f3119cb1411f788fb8f27258a79f79d2780fcc46cc98bbb882258385d0.pdf
	f5c6e7f3a8bdde1d91702c9b3342f3765a07a5b1b3fd0dadfaac7bb310b22e76.pdf

	68af9519a7c7b5f0840483da2703334d4dbe3e82f31d69ced87dfb01bca91c97.pdf
	c6986c99f42ca7c957d9ca6dfb9a65b42d2dd9c8d5486431958c4748be3e8fc7.pdf

	d8d0faa43ec9437eaa799867e06b06f2c73f57fcc1e425817d91cb3de83af1b1.pdf
	5b196e50f103119e7ccd4b41d29be4ee61682fad5e430394d3d459a8f12a1959.pdf
	75c3ed5d3236ced4706527f71185f8a4e139434b9e94f8c761060d397c5aaff0.pdf
	4b15ccbd7479951c625c75bda2de1188bcf22439214eb972b6fbcb729af33d71.pdf
	954257b17fc7a5e44f698874bf177007cc986253e8aafb56bf5663773ab6e2e3.pdf

	8593560ca54bf46972520605efc9f7c6f43bc802e742fc53c2e620abd83283a7.pdf
	3f85e9ab16eedeb00da1d9e1a7ebf0d8654c19ff7c92e58bf7d1f6fd010d5d6e.pdf
	Introduction
	Overview

	4b15ccbd7479951c625c75bda2de1188bcf22439214eb972b6fbcb729af33d71.pdf
	954257b17fc7a5e44f698874bf177007cc986253e8aafb56bf5663773ab6e2e3.pdf
	954257b17fc7a5e44f698874bf177007cc986253e8aafb56bf5663773ab6e2e3.pdf
	954257b17fc7a5e44f698874bf177007cc986253e8aafb56bf5663773ab6e2e3.pdf
	954257b17fc7a5e44f698874bf177007cc986253e8aafb56bf5663773ab6e2e3.pdf

	75c3ed5d3236ced4706527f71185f8a4e139434b9e94f8c761060d397c5aaff0.pdf

